Programs

Our “core gameplay loop” revolves around multi-year programs run by program managers with wide-ranging authority to coordinate several projects towards a single vision.
Programs aim to unlock technologies that are potentially big if true. However, these technologies are very much still research, not products.
The goal of a program is to make a technologies sufficiently unspeculative to the point where it can continue in other institutions – whether that’s as a startup, a government research program, or part of a larger company. Our job is to turn the impossible into the inevitable.
Current Programs
Nanomodular Electronics
Led By: Michael Filler
Nanomodular electronics is creating a new process for manufacturing microelectronics that are customizable down to the transistor, use a plethora of materials, and can be made on-demand without etching silicon or requiring a massive, expensive facility. By creating tiny, modular components separately from laying them down and wiring them together, we could make custom microelectronics as easily as printing this document.

Molecular Additive Manufacturing
Led By: Chris Wintersinger
Molecular additive manufacturing is creating heterogeneous materials whose structures can be specified down to nanoscale building blocks, potentially enabling us to engineer structures we depend on biology for today. By templating a precise pattern of covalently bonded proteins, polymers, and inorganic molecules, we could create powerful catalysts, membranes to easily filter water, and take the first steps on the path towards atomically precise manufacturing.

Current Programs

Nanomodular Electronics
Led By: Michael Filler
Nanomodular electronics is creating a new process for manufacturing microelectronics that are customizable down to the transistor, use a plethora of materials, and can be made on-demand without etching silicon or requiring a massive, expensive facility. By creating tiny, modular components separately from laying them down and wiring them together, we could make custom microelectronics as easily as printing this document.

Molecular Additive Manufacturing
Led By: Chris Wintersinger
Molecular additive manufacturing is creating heterogeneous materials whose structures can be specified down to nanoscale building blocks, potentially enabling us to engineer structures we depend on biology for today. By templating a precise pattern of covalently bonded proteins, polymers, and inorganic molecules, we could create powerful catalysts, membranes to easily filter water, and take the first steps on the path towards atomically precise manufacturing.
Future Programs
Several other programs are in the works
Sign up to our mailing list below to stay in the loop and get the latests updates.
The Right People with the Right Ideas.
Subscribe to our newsletter to stay in the loop.
